Preview

KSTU News

Advanced search

A stochastic-statistical approach in long-term forecasting of the national catch

https://doi.org/10.46845/1997-3071-2022-64-36-50

Abstract

Practical activities of research institutes of the Federal Agency for Fishery and other research organizations often involves the necessity to prepare forecasts of a possible national catch for extended time-periods. Different institutions require these forecasts for their business planning and other activities. Generally, accuracy of these deterministic forecasts is low. Moreover, catches of some commercial species are determined by not only biological parameters, but also management decisions that may result in unpredictable consequences. This paper considers the possibility to prepare a long-term forecast of the national catches of commercial species, which depends not only on the state of stocks, but also on economic and political factors. This forecast involves a stochastic-statistical approach that is based on a long-term series of observations over fisheries taking into account some patterns and assumptions. The paper includes analysis of some possible factors that can have a direct impact on sizes of catches and the relation between them. Modelling is based on the Monte-Carlo method and is performed using software designed to assess possible risks when input parameters are uncertain. The result is the most likely scenario for the development of fisheries, indicating the range of forecast uncertainty. As a test example, a long-term forecast for the Russian catch of NA blue whiting (Micromesistius poutassou) up to 2042 was made. For this fish species, the Russian catch sizes may comprise at least 86 000 tons in the long-term. Similar assessments can be made for other commercial species.

About the Author

D. V. Prozorkevich
Polar Branch of FSBSI “VNIRO” (“PINRO” named after N. M. Knipovich)
Russian Federation

Prozorkevich Dmitry Vladimirovich, PhD in Biology; leading researcher

Murmansk 



References

1. Maksimenko V. P., Antonov N. P. Kolichestvennye metody otsenki rybnykh zapasov [Quantitative Methods of Fish Reserves Evaluation]. PetropavlovskKamchatskiy, KamchatNIRO, 2003, 256 p.

2. Rosenberg A. A., Fogarty M. J., Cooper A. B., Dickey-Collas M., Fulton E. A., Gutiérrez N. L., Hyde K. J. W., Kleisner K. M., Kristiansen T., Longo C., Minte-Vera C., Minto C., Mosqueira I., Chato Osio G., Ovando D., Selig E. R., Thorson J. T. Developing new approaches to global stock status assessment and fishery production potential of the seas. FAO Fisheries and Aquaculture Circular, Rome, FAO, 2014, no. 1086, 175 p.

3. Babayan V. K., Bobyrev A. E., Bulgakova T. I., Vasilyev D. A., Il’in O. I., Kovalev Yu. A., Mikhailov A. I., Mikheyev A. A., Petukhova N. G., Safaraliev I. A., Chetyrkin A. A., Sheremet'ev A. D. Metodicheskie rekomendatsii po otsenke zapasov prioritetnykh vidov vodnykh biologicheskikh resursov [Guidelines for assessing the stocks of priority species of water biological resources]. Moscow, Publish. VNIRO, 2018, 312 p.

4. Dement'eva T. F. Biologicheskoe obosnovanie promyslovykh prognozov [Biological basis of commercial forecasts]. Moscow, Pishchevaya promyshlennost', 1976, 238 p.

5. Chetyrkin E. M. Statisticheskie metody prognozirovaniya [Statistical forecasting methods]. Moscow, Statistika, 1977, 200 p.

6. Kesteven G. L., Holt S. J. A note on the fisheries resources of the North West Atlantic. FAO Fisheries Paper, Rome, FAO, 1955, no. 7, 12 p.

7. Babayan V. K. Kratkiy slovar' terminov dolgosrochnogo prognozirovaniya (promyslovye bioprognozy) [A short glossary of terms for long-term forecasting (fishery biopredictions)]. Moscow, VNIRO, 1990, 48 p.

8. Ulltang Ø. Fish stock assessment and prediction: integrating relevant knowledge. An overview. Scientia Marina, 2003, vol. 67, no. S 1, pp. 5–12.

9. Gavrilov G. M. Dinamika vylova, metodicheskie osnovy otsenki zapasov, prognozirovaniya obshchego dopustimogo ulova (ODU) i vozmozhnogo vylova (VV) promyslovykh ryb v ekonomicheskoy zone Rossii dal'nevostochnykh morey i severozapadnoy chasti Tikhogo okeana [Dynamics of catch, methodical basis framework for the assessment of reserves and forecasting of the total allowable catch (TAC) of commercial fish in the Russian economic zone of the Far Eastern seas and NorthWestern Pacific]. Uspekhi sovremennogo estestvoznaniya, 2014, no. 5 (1), pp. 55–76.

10. Tezisy dokladov X Vserossiyskoy konferentsii po problemam rybopromyshlennogo prognozirovaniya [Abstracts of the X Russian Conference on the Problems of Fishery Industry Forecasting]. Pestrikova L.I. Ed. Murmansk, PINRO, 2009, 147 p.

11. Materialy XI Vserossiyskoy konferentsii po problemam rybopromyslovogo prognozirovaniya, posvyashchennoy 150-letiyu so dnya rozhdeniya N. M. Knipovicha [Proceedings of the XI Russian Conference on the Problems of Fishery Industry Forecasting]. Shevelev M. S. Ed. Murmansk, Izdatel'stvo PINRO, 2012, 228 p.

12. Mel'nikov I. V., Baytalyuk A. A. Sovremennoe sostoyanie syr'evoy bazy rybnoy promyshlennosti Dal'nevostochnogo basseyna i perspektivnyy prognoz ee razvitiya na period do 2025 g. [Current status of the resource base of the fishing industry in the Far Eastern basin and a long-term forecast of its development for the period up to 2025]. Tamozhennaya politika Rossii na Dal'nem vostoke, 2012, no. 3(60), pp. 15–21.

13. Ojaveer E., Kalejs M. Long-term prediction on Baltic fish stocks based on periodicity of solar activity. Rev Fish Biol Fisheries, 2012, Vol. 22, Issue 3, pp. 683–693. Available at: https://doi.org/10.1007/s11160-012-9264-8 Accessed 03 August 2021).

14. Filin A. A. Model'nyy analiz dinamiki zapasa barentsevomorskoy treski pri razlichnykh stsenariyakh dolgosrochnogo izmeneniya temperatury vody [Model analysis of the dynamics of the Barents Sea cod stock under different scenarios of long term changes in water temperature]. Voprosy rybolovstva, 2016, vol. 17, no. 4, pp. 232–245.

15. Yuan H., Gu Y., Wang J., Chen Y., Chen X. Study on the Medium and Long Term of Fishery Forecasting Based on Neural Network. Artificial Intelligence and Computational Intelligence, Berlin, Heidelberg, Springer, 2012, vol. 7530, pp. 186–205. Available at: https://doi.org/10.1007/978-3-642-33478-877 (Accessed 31 July 2021).

16. Klyashtorin L. B., Lyubushin A. A. Tsiklicheskie izmeneniya klimata i ryboproduktivnosti [Cyclic Changes in Climate and Fish Capacity]. Moscow, VNIRO, 2005, 235 p.

17. Merayo M. G., Hwang I., Núñez M., Cavalli A. A. Statistical Approach to Test Stochastic and Probabilistic Systems. Formal Methods and Software Engineering. Part of the Lecture Notes in Computer Science, Berlin, Heidelberg, Springer, 2009, vol. 5885, pp. 186–205. Available at: https://doi.org/10.1007/978-3-642-10373-510 (Accessed 31 July 2021).

18. Kartvelishvili V. M., Sviridova O. A. Risk-menedzhment. Metody otsenki riska: uchebnoe posobie [Risk management. Risk assessment methods: manual]. Moscow, FGBOU VO “REU im. G. V. Plekhanova”, 2017, 120 p.

19. Gjøsæter H., Bogstad B., Tjelmeland S. Assessment methodology for Barents Sea capelin, Mallotus villosus (Müller). ICES Journal of Marine Science, 2002, 59, pp. 1086–1095.

20. Aleksandrov D. I., Amelkin A. V., Amelkina A. S., Antsiferov M. Yu. [i dr.]. Sostoyanie syr'evykh biologicheskikh resursov Barentseva, Belogo i Karskogo morey i Severnoy Atlantiki v 2021 g. [Status of biological resources of the Barents, White and Kara Seas and North Atlantic in 2021]. Murmansk, PINRO im. N. M. Knipovicha, 2021, 145 p.

21. Report of the Blue Whiting Assesment Working Group. ICES Document C.M., 1987, Assess: 4, 57 p.

22. Working Group on Widely Distributed Stocks (WGWIDE). ICES Scientific Reports, 2020, vol. 2, issue 82, 1019 p. Available at: http://doi.org/10.17895/ices.pub.7475 (Accessed 28 July 2021).

23. Kalashnikov Yu. N., Krysov A. I., Pronyuk A. A., Rybakov M. O. Mezhdunarodnoe regulirovanie promysla sel'di, putassu i skumbrii [International regulation of the fishery for herring, blue whiting and mackerel]. Vestnik MGTU, 2017, vol. 20, no. 2, pp. 422–433.

24. Zilanov V. K. Putassu Severnoy Atlantiki [North Atlantic blue whiting]. Moscow, Lyogkaya i pishchevaya promyshlennost', 1984, 160 p.

25. Shibaev S. V. Promyslovaya ikhtiologiya [Commercial ichthyology]. Kaliningrad, OOO “Aksios“, 2014, 535 p.

26. Borisov V. M., Kotenev B. N. Smeshannaya Rossiysko-Norvezhskaya komissiya po rybolovstvu: plyusy i minusy (k 30-letiyu obrazovaniya SRNK) [The Joint Russian-Norwegian Commission on Fisheries: pluses and minuses (to the 30-th Anniversary of the JRNFC)]. Rybnoe khozyaystvo, 2005, no. 2, pp. 6–8.


Review

For citations:


Prozorkevich D.V. A stochastic-statistical approach in long-term forecasting of the national catch. KSTU News. 2022;(64):36-50. (In Russ.) https://doi.org/10.46845/1997-3071-2022-64-36-50

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1997-3071 (Print)