Analysis of marine motor oils using dielectric permittivity relaxation
https://doi.org/10.46845/1997-3071-2023-71-131-144
Abstract
During exploitation of marine engine oil, its aging occurs, the main factors of which are oxidative high-temperature degradation and contamination with soot, wear metals, fuel, water and coolant. In this work, a number of used marine oils have been studied by relaxation dielectric spectroscopy to determine their characteristics associated with lubricant degradation and engine wear. For marine oils Total DISOLA M4015, Shell Rimula, Mobil 5W40, Mobil 10W40, Navigo TPEO 12/40, the dependences of the relative permittivity and the tangent of the loss angle on frequency have been experimentally obtained. The dielectric constant of marine motor oils ranges from 2.1 to 2.4 and depends on the viscosity, density of the oil, the content of paraffin, naphthenic and aromatic compounds in it and the additive package. An increase in the additive content increases the dielectric constant of the oil. The authors investigated the relationship of the dipole relaxation times of fresh and used oils with kinematic viscosity, with the content of additives and wear products. The desired array of relaxation time distributions has been calculated by regularization and the least squares method using the CONTIN algorithm. The calculations have been carried out in the RILT program running in the MatLab environment. It has been shown that polarization and subsequent dipole relaxation are caused by additive molecules that are triggered during engine operation. Differences in relaxation times can also be caused by the formation of associations involving dipole molecules. The data obtained in the work can be used in the future to build an expert engine diagnostics system and to determine the parameters of unknown oils.
About the Authors
O. V. SynashenkoRussian Federation
Oksana V. Synashenko, PhD in Physical and Mathematical sciences, Associate Professor
Department of Physics
Kaliningrad
N. Ya. Sinyavskiy
Russian Federation
Nikolay Ya. Sinyavskiy, Doctor of Physical and Mathematical sciences, Professor, Head of the Department
Department of Physics
Kaliningrad
N. A. Kostrikova
Russian Federation
Natal’ya A. Kostrikova, PhD in Physical and Mathematical sciences, Associate Professor, Vice-rector for Research
Kaliningrad
References
1. Моторные масла / Р. Балтенас [и др.]. М., СПб.: АльфаЛаб, 2000. 272 с.
2. Sinyavsky N. Ya., Ivanov A. M., Kostrikova N. A. Analysis of wear particles in used marine engine oils // Marine intellectual technologies. 2021. N 4 (4). P. 44–48.
3. Sinyavsky N., Mershiev I. NMR relaxometry used ship oils // Journal of Eta Maritime Science. 2022. V. 10 (3). P. 195–201.
4. Korneva I. P., Sinyavsky N. Ya., Kostrikova N. A. Study of marine motor oils with wear products by optical methods // Marine intellectual technologies. 2022. N 4 (3). P. 72–78.
5. Guan L., Feng X. L., Xiong G. Engine lubricating oil classification by SAE grade and source based on dielectric spectroscopy data // Analytica Chimica Acta. 2008. V. 628. Is. 1. P. 117–120.
6. Kremer F., Schönhals A. (eds). Broadband Dielectric Spectroscopy. Berlin: Springer-Verlag Heidelberg GmbH, 2012.
7. Application of dielectric spectroscopy for engine lubricating oil degradation monitoring / L. Guan, X. L. Feng, G. Xiong, J. A. Xie // Sensors and Actuators A: Physical. 2011. V. 168. Is. 1. P. 22–29.
8. Dielectric Properties of Electrical Insulating Liquids for High Voltage Electric Devices in a Time-Varying Electric Field / Peter Havran [et al.] // Energies. 2022. N 15. P. 391.
9. The Effect of Fe3O4 Nanoparticle Size on Electrical Properties of Nanofluid Impregnated Paper and Trapping Analysis / Bin Du, Qian Liu, Yu Shi, Yushun Zhao // Molecules. 2020. N 25. P. 3566.
10. Zasetsky A. Y., Buchner R. Quasi-linear least squares and computer code for numerical evaluation of relaxation time distribution from broadband dielectric spectra // J. Phys.: Condens. Matter. 2011. N 23. P. 025903.
11. Barthel J., Buchner R. High frequency permittivity and its use in the investigation of solution properties // Pure & App. Chem. 1991. V. 63. N 10. P. 1473–1482.
12. Dielectric Properties of Crude Oil Components / H. Vralstadet [et al.] // Energy Fuels. 2009. N 23. P. 5596–5602.
13. Dielectric submicroscopic phase characterisation of engine oil dispersed in jet fuel based on on-line dielectric spectroscopy / Ying-zhong Gong [et al.] // Lubrication Science. 2017. V. 29. Is. 5. P. 335–354.
14. Study of the dielectric response in mineral oil using frequency-domain measurement / Yuan Zhouet [et al.] // Journal of Applied Physics. 2014. N 115. P. 124105.
15. Levi D., Stoynov Z., Vladikova D. Application of permittivity spectroscopy for screening of motor oils lubricating properties // Bulgarian Chemical Communications. 2017. V. 49. Sp. is. C. P. 254–259.
16. TH2826/A High Frequency LCR-Meter. Operationmanual. URL: http://222.185.248.92:8080/upload/UploadAction2/20200114135540_ 522.pdf (дата
17. обращения: 01. 04. 2023).
18. Гусев Ю. А. Основы диэлектрической спектроскопии. Казань: КГУ, 2008. 112 с.
19. Provencher S. W. A constrained regularization method for inverting data represented by linear algebraic or integral equations // Computer Physics Communications. 1982. V. 27 (3). P. 213–227.
20. Marino I.-G. Regularized Inverse Laplace Transform, 2004. URL: http://www.mathworks.com/matlabcentral/fileexchange/6523-rilt/content/ rilt.m (дата
21. обращения: 26. 06. 2022).
22. Моторное масло Shell вязкостью 15W-40 – характеристики. URL: https://www.shell-moscow.ru/catalog/viscosity_15w-40/ (дата обращения: 08. 10. 2023).
23. Mobil 1™x15W-30. URL: https://www.mobil.com/ ru-ru/passenger-vehicle-lube/pds/eu-xx-mobil-1-x1-5w-30 (дата обращения: 08. 10. 2023).
24. Mobil Super™ 3000 X1 5W-40. URL: https://www.mobil.com/en/ru-mda/passenger-vehicle-lube/pds/eu-xx-mobil-super-3000-x1-5w-40 (дата обращения: 08. 10. 2023).
25. MOBIL™ 10W40. URL: https://www.mobil.com/en/ru-ua/passenger-vehicle-lube/pds/eu-xx-mobil-10w-40 (дата обращения: 08. 10. 2023).
26. Total Disola M 4015 – моторное масло для высоко- и среднеоборотных дизелей судов. URL: https://interoil-spb.ru/product/motornoe-maslo-total-disola-m-4015/ (дата обращения: 08. 10. 2023).
27. Navigo TPEO 12/40. URL: http://www.fareastfish.ru/ oil/trunk/navigo-tpeo-12-40.html (дата обращения: 08. 10. 2023).
28. Базовые масла. URL: https://danalubes.ru/products/ base-oils (дата обращения: 08. 10. 2023).
29. Григоров А. Б., Наглюк И. С. Рациональное использование моторных масел : монография. Харьков: Точка, 2013. 178 c.
30. Ковалишин Ф. П. Исследование релаксации электрических параметров отработанного моторного масла // Вестник молодежной науки. 2023. № 2 (39). С. 1–7.
31. Григоров А. Б., Карножицкий П. В., Наглюк И. С. Изменение диэлектрической проницаемости дизельных моторных масел в эксплуатации // Автомобильный транспорт. 2007. № 20. С. 3.
32. Sinyavsky N., Kostrikova N., Analysis of the marine engine oils elemental constituents for engine diagnostics, 2023 (in print).
33. Перенести в английский вариант
34. Baltenas R. [et al.]. Motornye masla [Motor oils]. Moscow, Saint-Petersburg, Al’faLab. 2000, 272 p.
35. Sinyavsky N. Ya., Ivanov A. M., Kostrikova N. A. Analysis of wear particles in used marine engine oils. Marine intellectual technologies. 2021, no. 4 (4), pp. 44–48.
36. Sinyavsky N., Mershiev I. NMR relaxometry used ship oils. Journal of Eta Maritime Science. 2022, vol. 10 (3), pp. 195–201.
37. Korneva I. P., Sinyavsky N. Ya., Kostrikova N. A. Study of marine motor oils with wear products by optical methods. Marine intellectual technologies. 2022, no. 4 (3), pp. 72–78.
38. Guan L., Feng X.L., Xiong G. Engine lubricating oil classification by SAE grade and source based on dielectric spectroscopy data. Analytica Chimica Acta. 2008, vol. 628, is.1, pp. 117–120.
39. Kremer F., Schönhals A. (eds). Broadband Dielectric Spectroscopy. Berlin, Springer-Verlag Heidelberg GmbH, 2012.
40. Guan L., Feng X. L., Xiong G., Xie J. A. Application of dielectric spectroscopy for engine lubricating oil degradation monitoring. Sensors and Actuators A: Physical. 2011, vol. 168, is. 1, pp. 22–29.
41. Peter Havran [et al.]. Dielectric Properties of Electrical Insulating Liquids for High Voltage Electric Devices in a Time-Varying Electric Field. Energies. 2022, no. 15, p. 391.
42. Bin Du, Qian Liu, Yu Shi, Yushun Zhao. The Effect of Fe3O4 Nanoparticle Size on Electrical Properties of Nanofluid Impregnated Paper and Trapping Analysis. Molecules. 2020, no. 25, p. 3566.
43. Zasetsky A. Y., Buchner R. Quasi-linear least squares and computer code for numerical evaluation of relaxation time distribution from broadband dielectric spectra. J. Phys.: Condens. Matter. 2011, no. 23, p. 025903.
44. Barthel J., Buchner R. High frequency permittivity and its use in the investigation of solution properties. Pure & App. Chem. 1991, vol. 63, no. 10, pp. 1473–1482.
45. Vralstad H. [et al.]. Dielectric Properties of Crude Oil Components. Energy Fuels. 2009, no. 23, pp. 5596–5602.
46. Ying-zhong Gong [et al.]. Dielectric submicroscopic phase characterisation of engine oil dispersed in jet fuel based on on-line dielectric spectroscopy. Lubrication Science. 2017, vol. 29, is. 5, pp. 335–354.
47. Yuan Zhou [et al.]. Study of the dielectric response in mineral oil using frequency-domain measurement. Journal of Applied Physics. 2014, no. 115, p. 124105.
48. Levi D., Stoynov Z., Vladikova D. Application of permittivity spectroscopy for screening of motor oils lubricating properties. Bulgarian Chemical Communications. 2017, vol. 49, sp. is. C, pp. 254–259.
49. TH2826/A High Frequency LCR-Meter. Operation manual [online]. Available at: http://222.185.248.92:8080/upload/UploadAction2/20200114135540_522.pdf (Accessed 1 April 2023).
50. Gusev Yu. A. Osnovy dielektricheskoy spektroskopii [Fundamentals of dielectric spectroscopy]. Kazan', KGU, 2008, 112 p.
51. Provencher S. W. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Computer Physics Communications. 1982, vol. 27 (3), pp. 213–227.
52. Marino I.-G. Regularized Inverse Laplace Transform, 2004. Available at:
53. http://www.mathworks.com/matlabcentral/fileexchange/6523-rilt/content/rilt.m (Accessed 26 June 2022).
54. Motornoe maslo Shell vyazkost'yu 15W-40 – kharakteristiki [Shell engine oil viscosity 15W-40]. Available at: https://www.shell-moscow.ru/catalog/viscosity_15w-40/ (Accessed 8 October 2023).
55. Mobil 1™x15W-30. Available at: https://www.mobil.com/ ru-ru/passenger-vehicle-lube/pds/eu-xx-mobil-1-x1-5w-30 (Accessed 8 October 2023).
56. Mobil Super™ 3000 X1 5W-40. Available at: https://www.mobil.com/en/ru-mda/passenger-vehicle-lube/pds/eu-xx-mobil-super-3000-x1-5w-40 (Accessed 8 October 2023).
57. MOBIL™ 10W40. Available at: https://www.mobil.com/en/ru-
58. ua/passenger-vehicle-lube/pds/eu-xx-mobil-10w-40 (Accessed 8 October 2023).
59. Total Disola M 4015 – motornoe maslo dlya vysoko- i sredneoborotnykh dizeley sudov [Total Disola M 4015 – motor oil for high and medium speed diesel ships]. Available at: https://interoil-spb.ru/product/motornoe-maslo-total-disola-m-4015/ (Accessed 8 October 2023).
60. Navigo TPEO 12/40. Available at: http://www.fareastfish.ru/oil/trunk/navigo-tpeo-12-40.html (Accessed 8 October 2023).
61. Bazovye masla [Base oils]. Available at: https://danalubes.ru/products/ base-oils (Accessed 8 October 2023).
62. Grigorov A. B., Naglyuk I. S. Ratsional'noe ispol'zovanie motornykh masel [Rational use of motor oils]. Kharkov, Tochka. 2013, 178 p.
63. Kovalishin F. P. Issledovanie relaksatsii elektricheskikh parametrov otrabotannogo motornogo masla [Study of relaxation of electrical parameters of used engine oil]. Vestnik molodezhnoy nauki. 2023, no. 2 (39), pp. 1–7.
64. Grigorov A. B., Karnozhitskiy P. V., Naglyuk I. S. Izmenenie dielektricheskoy pronitsaemosti dizel'nykh motornykh masel v ekspluatatsii [Change of dielectric permittivity of diesel engine oils in operation]. Avtomobil'nyy transport. 2007, no. 20, p. 3.
65. Sinyavsky N., Kostrikova N. Analysis of the marine engine oils elemental constituents for engine diagnostics, 2023 (in print)
Review
For citations:
Synashenko O.V., Sinyavskiy N.Ya., Kostrikova N.A. Analysis of marine motor oils using dielectric permittivity relaxation. KSTU News. 2023;(71):131-144. (In Russ.) https://doi.org/10.46845/1997-3071-2023-71-131-144